雨点 发表于 2015-3-25 22:01:37

热处理是我国轴承制造业发展的瓶颈

制造业是我国国民经济的支柱。改革开放以来我国装备制造业以平均每年17%的速率快速增长,目前我国装备制造业的增加值仅次于美、日、德,居世界第四,已成为制造业大国, 但应清醒地看到我国还不是制造业强国, 在国际制造业中处于低端地位,与国际先进水平存在巨大差距。其中一个突出的问题是我国制造业的产品因质量低、寿命短、可靠性差而缺乏竞争力,只能制造低品位、低附加值的产品,只能依靠产能的扩大实现增长。国防工业和许多重要工业部门所需的重要工艺装备以及核心零部件依赖进口的局面长期未能改观,严重威胁我国国防安全和经济安全。
我国热处理(含表面改性,下同)技术的落后是造成这种状况的主要原因之一。已成为制约我国制造业发展的瓶颈,应引起高度重视。本文拟就热处理与表面改性技术的特点、作用、我国在此领域与国际发达国家的差距和发展出路等问题,提出一些粗浅的看法,期望引起讨论并得到读者的批评指正。
热处理与表面改性技术的特点材料的性能并不单纯取决于材料的种类和成分,通过热处理和表面改性改变材料内部的组织,将大幅度改变材料性能。例如:高速钢在退火状态硬度不高于280HB并有相当好的塑性和韧性,在经过淬火回火之后则有很高的硬度、红硬性和耐磨性。由于溶入基体中的合金元素的含量以及奥氏体的晶粒度都和淬火温度有关,其趋势是硬度、红硬性随淬火温度提高而提高,韧性则随之下降,强度则是先升后降。利用这种规律,可以根据不同刀具和模具的使用特点选择各自最佳的淬火温度,车刀具的刃部和刀柄都比较厚实,对强度要求不高,承受冲击载荷较轻, 可以采用接近于熔点的淬火温度,使尽可能多的合金元素和碳溶入奥氏体中,从而提高红硬性和耐磨性。钻头钻孔时刃口不易冷却,希望尽可能提高其红硬性,但为防止扭断,钻头需要有较高强度,因此其淬火温度略低于车刀。铣刀和绞刀的刃口较薄,为了避免崩刃,要求有足够的韧性,应适当降低淬火温度,小钻头使用时主要损坏方式是扭断或折断,为保证较高强度宜进一步降低淬火加热温度。冷挤压模具承受很高的应力,而对红硬性要求不高,所以选择出现强度峰值的淬火加热温度,而对于一些细长的或形状复杂,受较大冲击载荷的冷冲模,则应选择更低的淬火温度。
结构钢和低合金工具钢也有类似的情况,预先热处理组织、淬火加热温度、冷却方式、回火温度都对钢的性能有明显的影响,它们之间的不同组合可以使材料获得不同的综合性能。结构钢的强度、硬度、韧性、塑性和弹性极限都随着淬火后的回火温度而变化,对于要求具有高塑性、高韧性特别是低的缺口敏感性的工件通常选用高温回火(调质处理),而要求高强度和较高硬度的工件选用200℃左右的低温回火,例如30CrMnSi,40CrNiMo淬火后200℃回火抗拉强度可高达1600~1800MPa,比调质提高1倍左右。各类弹簧等弹性元件通常选用呈现弹性极限峰值的中温回火。此外等温淬火、二相区加热淬火和形变热处理等工艺都可以使结构钢获得良好强韧性。至于各种化学热处理和表面涂覆技术则可以通过调整工艺参数改变渗层表面的浓度和渗层深度以及控制浓度梯度和性能梯度,以适应不同工件的不同的服役条件对工件整体综合性能的要求,例如不同零件的渗碳处理,应该有不同技术要求,才能获得良好的使用性能,石油钻井的牙轮钻,渗碳层表面浓度由0.9~1.0%C降低到0.7~0.8 %C,并使浓度分布曲线呈平台状,使用寿命由27小时提高到52小时,收到一个钻井队抵二个钻井对的效果,又例如用离子注入的方法进行表面改性处理可以在不改变整体的强度、韧性的同时,大幅度提高耐磨性、降低摩擦系数、提高抗蚀性,应用于航天器上各种传动机构中的轴承和各种摩擦件、飞机上的液压马达中的耐磨零件、以及石油工业泥浆泵的套筒等均取得良好的效果。在有些情况下针对工件的特点采用一些看似“非正规”的热处理工艺,能收到出奇效果:3Cr2W8热模钢的淬火温度范围一般为1050~1120℃,但锅炉钢管热挤压模,在模具型腔中相当于钢管散热筋二侧的位置,承受很大的应力,容易在热态下屈服而使模具失效。经过试验将淬火温度提高到1170~1180℃,淬火冷却时水冷至~650℃,然后转入低温盐浴中冷却,模具寿命提高几倍;水稻收割机刀片,用高浓度碳氮共渗处理;表面层出现大量碳化物和残余奥氏体,按常规的检验标准被视为不合格,但因具有很高的耐磨性和良好的抗蚀性,水稻收割机刀片的使用寿命比常规渗碳处理高数倍。
粗略回顾上述早为人们熟知的事实,只是说明一种易被忽视的观点:最优化的热处理工艺不可能是千篇一律的,同种材料的各项性能都会因热处理方法及其工艺参数的不同而改变,各项性能指标又常常此消彼长。选择合适的热处理工艺参数、获得与工件的使用状况和失效方式相适应的最佳综合性能,才有可能制造出高质量的产品,这就是热处理与表面改性技术的特点、难点和魅力之所在,充满让人发挥主观能动性的空间和余地。
历史已证明:改进热处理技术,更充分发挥材料的潜力,往往是产品更新换代的催化剂。调质处理即淬火后高温回火后的屈服强度大约在600~900 MPa之间,无论是强度和韧性都显著优于正火处理,因而成为结构钢常用的热处理工艺,在二次大战期间前苏联的研究人员发现30CrMnSi淬火和低温回火,或等温淬火后,屈服强度达到1500 MPa,并保持足够的韧性。用于制造飞机起落架。中、低碳结构钢淬火低温回火处理还应用于火炮防弹护板等军工产品,随后各国开发一系列以淬火和低温回火处理为特征的“超高强度钢”促进了不少重要产品的更新换代,例如:大功率燃气轮机的液压耦合器的转子,传递着几万以至几十万千瓦的功率,转速达每分钟2万转以上,原设计为SEA4340钢调质处理,屈服强度为800MPa,后来采用淬火、低温回火处理,屈服强度达到1800MPa,使整个耦合的重量减少到原来的1/4。这对于提高舰艇的性能是很有利的。
表面改性技术对高端产品的研发同样有重要作用,众所周知,燃气的热效率随着燃气温度的升高而提高,然而高温合金的耐热温度限制了燃烧室温度的提高。在国外,由于研究成功在耐热合金表面沉积含蜂窝状ZrO2复合涂层,起着隔热作用,使耐热合金叶片的温度比燃气温度低150℃以上,从而研制出燃烧室温度更高的燃气轮机,促成航空发动机的更新换代。
即使是一般的机械制造行业,热处理与表面改性的技术进步同样对产品的创新有重要意义,例如生产标准件的冷镦机的生产率现在已达600件/min,相比于二十几年前60件/min提高了10倍。标准件行业面貌大为改观。其实冷镦机并不复杂,在当年设计制造600件/min的冷镦机亦非难事,问题在于那个小小的六角冲头,它当时寿命低于2万件,在这种情况下,提高冷镦机的速度毫无意义。因为标准件是一种批量极大的产品,通常要求每个冲头寿命都要超过一个班,否则很难进行生产管理。上世纪80年代初通过热处理工艺的改进,使冲头的寿命提高到5万件以上,才有100件/min的冷镦机面世.及至90年代用气相沉积氮化钛的方法进行六角冲头的表面改性处理,使其寿命提高到35万件以上。成为高速冷镦机的催生剂。
一种特种变速箱的薄壁齿圈,其特点是可以显著减小变速箱的体积和重量,但是用常规的齿轮热处理方法制造遇到很大的难题,渗碳淬火或感应加热淬火都难以控制热处理畸变,而常规的渗氮处理不能满足该齿轮对接触疲劳强度的要求,只有应用动态可控渗氮工艺,使接触疲劳强度由1400MPa提高到1700MPa,并且研究成功控制薄壁齿圈渗氮畸变的方法,才使特种变速箱试制成功。
仅从这些事例就可以反映出:热处理的技术进步对产品创新有重要的推动作用。
鉴于上述特点,欲提高热处理的技术水平首先应开展热处理工艺参数对材料组织性能影响规律的系统研究,其次研究工作不能只停留在用试样研究的层面上。热处理工艺研究需要和产品的台架试验、装机试验及失效分析相结合,经过不断摸索与改进,才能收到大幅度提高寿命的效果,例如:卡车活塞销冷挤压凸模,承受约2000MPa单位压力,需要有很高的抗压屈服强度,而且其形状细长易折断,又要求有足够的韧性,挤压过程中被挤压金属对韧带强烈摩擦,因此需要很高的耐磨性和一定的热稳定性。选用W6Mo5Cr4V2高速钢制造。起先选用手册中给出的标准热处理规范进行处理,使用寿命低于400件。失效方式是凸模施压过程中折断。为了提高材料的韧性将淬火温度由1225℃降低至1190℃,收到显著效果,寿命提高到2500件左右。进一步降低淬火温度虽然可使韧性进一步提高,然而使用寿命反而回落。对凸模的工作状况和失效方式进行仔细分析后发现,在低温范围内加热淬火的冲头,刃带被逐渐拉毛,脱模时阻力愈来愈大,在脱模过程中由于冲击拉伸应力的作用导致断裂。针对这种具体情况采用1190℃淬火560℃回火4次,然后进行气体氮碳共渗处理。表面层(约0.02mm)的硬度提高到1000HV以上,而整体上保持高强度和高韧性,使用寿命提高到1万件以上。
再则考虑到热处理工艺参数对材料性能的影响相当敏感,为了保证质量的重现性和一致性必须研究开发先进的热处理工艺装备和精密可靠性的热处理过程控制技术、设计合理的工装夹具、规定和严格执行合理的装炉方式和操作方法。所以提高热处理质量及其重现性是一个系统工程。在这一领域中不同国家和不同企业之间存在很大差距,也就不足为奇了。
热处理技术落后已成为我国制造业发展的瓶颈在发达国家中,凡是拥有著名品牌的机械产品的厂商都高度重视热处理技术研发,通过大量的投入,持续的改进和长期的积累,形成各自独有的技术,并作为市场竞争力的要素而严加保密。人们可以购得名牌产品,通过测绘和解剖分析,仿制出外型和成分与之完全相同的产品,但使用寿命和可靠性常常相差甚远。正是在这一关键性的环节上我国与发达国家存在很大的差距。
长期以来我国制造业存在着重产品、轻毛坯,而在毛坯制造中则重控形、轻控性,重产能轻质量等倾向。发展规划和技改资金过分倾向于购置精密加工设备而很少顾及材料制造、特别是控性与改性技术的研发,其后果常常由于产品的使用寿命低和可靠性差而在市场竞争中处于劣势,只能陷入在惨烈价格战中挣扎的困境。热处理在制造业中的作用未受重视,热处理的产值按斤论价,其中的知识含量的价值被严重扭曲。被视为一个“产值很小的产业”而处于边缘化。以致我国热处理严重落后于国际先进水平。
发展数字化的热处理智能技术热处理过程十分复杂,在不同的外场(热、力、电、磁、光等)和环境的作用下,材料发生相变、应力、应变和化学反应等变化,对这些复杂现象中的客观规律认识的深化,是提高热处理质量的基础。电子计算机的发展,为人们提供了强大的科学计算和信息处理的能力,从而有可能集成不同学科的知识,用多场耦合的方法建立描述材料热处理过程中各种复杂现象及其相互作用的物理数学模型和计算机模拟方法,构成热处理的虚拟生产平台。将有可能使热处理技术由传统的“技艺”型的落后状态向着以科学计算为依据的高度知识密集型技术的方向转化。 热处理过程的计算机模拟近年来发展迅速,并已显示出提升热处理水平的巨大潜力。但也应指出,热处理计算机模拟技术还很不成熟,还有一系列基础研究有待进行,例如气—固表面换热和液—固表面换热的测试计算方法、非等温非等速条件下相变动力学的定量计算、多场耦合的算法,复杂非线性问题的算法、界面反应的物质传递、等等都属于高难度的有待长期深入研究的课题。计算机模拟结果的验证和数学模型的修正都是工作量浩大的基础工作。
由于热处理过程的复杂性,还有许多基本原理尚待进一步深入研究,以致热处理中有很多问题还不可能建立物理数学模型。这就有必要用“基于知识的工程(KBE)”的方法,从大量的生产记录、测试数据、案例和工程技术人员的经验中挖掘隐性的知识,用以改进热处理技术和开发新的技术。
计算机模拟和KBE技术是发展知识密集型热处理技术的二大支柱,是开发数字化热处理智能技术制造的基础。
另一个值得重视的问题是不应将热处理数字化、信息化的作用局限于热处理生产环节。目前,热处理是制造业信息化中最薄弱的环节,成为制造业全生命周期信息集成的瓶颈。热处理技术的研发与产品设计脱节,热处理工艺的制订甚至热处理技术指标都有很大盲目性,是造成产品肥头大耳或可靠性差的原因之一。信息化、数字化的热处理智能技术的发展有可能克服上述弊端。将产品计算机辅助设计、选材与热处理计算机模拟以及产品可靠性评估相结合,构成产品创新设计平台,实现重量轻、体积小而又高度可靠的产品设计。可以预期热处理数学模型和计算机拟技术将在先进制造技术中发挥发挥越来越重要的作用。


sszbaby 发表于 2015-4-3 13:17:28

确实是这样
页: [1]
查看完整版本: 热处理是我国轴承制造业发展的瓶颈